首页> 外文OA文献 >Learning scale-variant and scale-invariant features for deep image classification
【2h】

Learning scale-variant and scale-invariant features for deep image classification

机译:学习深度图像的尺度变量和尺度不变特征   分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convolutional Neural Networks (CNNs) require large image corpora to betrained on classification tasks. The variation in image resolutions, sizes ofobjects and patterns depicted, and image scales, hampers CNN training andperformance, because the task-relevant information varies over spatial scales.Previous work attempting to deal with such scale variations focused onencouraging scale-invariant CNN representations. However, scale-invariantrepresentations are incomplete representations of images, because imagescontain scale-variant information as well. This paper addresses the combineddevelopment of scale-invariant and scale-variant representations. We propose amulti- scale CNN method to encourage the recognition of both types of featuresand evaluate it on a challenging image classification task involvingtask-relevant characteristics at multiple scales. The results show that ourmulti-scale CNN outperforms single-scale CNN. This leads to the conclusion thatencouraging the combined development of a scale-invariant and scale-variantrepresentation in CNNs is beneficial to image recognition performance.
机译:卷积神经网络(CNN)要求在分类任务上训练大型图像语料库。图像分辨率,所描绘的对象和图案的尺寸以及图像比例的变化会阻碍CNN的训练和性能,因为与任务相关的信息会随空间比例而变化。但是,比例尺不变表示是图像的不完整表示,因为图像也包含比例尺变化信息。本文论述了尺度不变表示和尺度不变表示的联合发展。我们提出了一种多尺度的CNN方法,以鼓励人们识别这两种类型的特征,并在具有挑战性的,涉及多个尺度的任务相关特征的图像分类任务中对其进行评估。结果表明,我们的多尺度CNN优于单尺度CNN。这得出结论,鼓励CNN中尺度不变和尺度变异表示的联合发展有利于图像识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号